
 
 
 

 

 
 

 
 
 

 

 
 

Mark Scheme (Results) 
 

Summer 2024 
 
Pearson Edexcel GCSE In  

Computer Science (1CP2/02)  

Paper 2: Application of Computational 

Thinking 

 

 

 

 

 

 

 

 

 

PMT



Edexcel and BTEC Qualifications 

 

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We 

provide a wide range of qualifications including academic, vocational, occupational and 

specific programmes for employers. For further information visit our qualifications websites 

at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the 

details on our contact us page at www.edexcel.com/contactus. 

 

 

 

 

 

 

 

 

 

 

 

Pearson: helping people progress, everywhere 

 

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress 

in their lives through education. We believe in every kind of learning, for all kinds of people, wherever 

they are in the world. We’ve been involved in education for over 150 years, and by working across 

70 countries, in 100 languages, we have built an international reputation for our commitment to high 

standards and raising achievement through innovation in education. Find out more about how we 

can help you and your students at: www.pearson.com/uk 

 

 

 

 

 

 

Summer 2024 

Question Paper Log Number P75441 

Publications Code 1CP2_02_2406_MS 

All the material in this publication is copyright 

© Pearson Education Ltd 2024 

PMT

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk


General Marking Guidance 

  

  

• All candidates must receive the same 

treatment.  Examiners must mark the first candidate in 

exactly the same way as they mark the last. 

• Mark schemes should be applied positively. Candidates 

must be rewarded for what they have shown they can do 

rather than penalised for omissions. 

• Examiners should mark according to the mark scheme 

not according to their perception of where the grade 

boundaries may lie. 

• There is no ceiling on achievement. All marks on the mark 

scheme should be used appropriately. 

• All the marks on the mark scheme are designed to be 

awarded. Examiners should always award full marks if 

deserved, i.e. if the answer matches the mark 

scheme.  Examiners should also be prepared to award 

zero marks if the candidate’s response is not worthy of 

credit according to the mark scheme. 

• Where some judgement is required, mark schemes will 

provide the principles by which marks will be awarded 

and exemplification may be limited. 

• When examiners are in doubt regarding the application 

of the mark scheme to a candidate’s response, the team 

leader must be consulted. 

• Crossed out work should be marked UNLESS the 

candidate has replaced it with an alternative response. 

 

 

 

 

 

PMT



4 

 

 
 

2406 1CP2 02 Mark Scheme  

      

Questio

n 

number 

MP 
Appx. 

Line 
Answer Additional guidance 

Mark 

1   Award marks as shown.  

(10) 

 1.1 5 Remove double quote from list of integers (1) … 577, 597, 622] 

 1.2 6 Capitalise false to make it a keyword (1) found = False 

 1.3 8 Change 0123 to any integer value (1) ● 0 

● Allow any numeric value 

 1.4 15 Add closing bracket for integer conversion (1) index = int (input ("Enter an index:")) 

 1.5 21 Correct ‘color’ to ‘colour’ (1) colour = rainbow[index] 

 1.6 22 
Correct type conversion attempting to print an int() 

to convert to string (1) 

print (colour) 
print ((colour)) 
print (str (colour)) 

● Allow any method 

 1.7 26 Correct ‘and’ to ‘or’ (1) 
if ((wavelength < 380) or 
    (wavelength > 622)): 

 1.8 29 Correct 1 to 0 (1) index = 0 

 

1.9 35 Correct <= to > (1) 

elif (waveTable[index] > wavelength): 

● Allow >= 

● Allow reversal of arguments: 

elif(wavelength <= waveTable[index]) 

 1.10 37 Correct [index - 2] to [index – 1] (1) print (rainbow[index - 1]) 

 

PMT



5 

 

 
 
 

PMT



6 

 

 

Question 

number 

MP Appx. 

Line 

Answer Additional guidance Mark 

2   Award marks as shown. ● Do not award mark if more than 

one line in each group of four is 

uncommented 

 

(10) 

 2.1 20 if (letter.isalpha ()): (1) 

 2.2 29 if (letter.isupper ()): (1) 

 2.3 32 if (value > ord ('Z')): (1) 

 2.4 41 elif (value < ord ('A')): (1) 

 2.5 48 elif (letter.islower ()): (1) 

 2.6 55 if (value > ord ('z')): (1) 

 2.7 60 elif (value < ord ('a')): (1) 

 2.8 68 newLetter = chr (value) (1) 

 2.9 76 cipherText = cipherText + newLetter (1) 

 2.10 81 cipherText = cipherText + letter (1) 

 

 
 

PMT



7 

 

 
 

PMT



8 

 

PMT



9 

 

 

Question 

number 
MP 

Appx. 

Line 
Answer Additional guidance 

Mark 

3   Award marks as shown.  

(10) 

 3.1 18 purchaseType = 0 (1) 

purchaseType = int (0) 

 

purchaseType = int () along with  

purchaseType = 0 

 

Do not award spelling or transcription errors for 

this mark 

 3.2 26 PURCHASE_TYPE_ITEM (1)  

 3.3 26 and (1)  

 3.4 30 PURCHASE_TYPE_WEIGHT (1) 
Allow 

• != PURCHASE_TYPE_ITEM 

 3.5 33 float (1)  

 3.6 38 * (1)  

 3.7 42 <= 0 (1) 
Allow 

● < 1 

 3.8 48 > (1) 
Allow 

● != 

 

3.9 51 print ("Total cost is", totalCost) (1) 

● Must be syntactically correct 

● Must include both message and total 

● Allow any message text  

● Allow concatenation (+) if conversion to string 

provided for variable 

● Ignore formatting of currency, if attempted 

 3.10  Functions for test data given in paper (1)  

 
  

PMT



10 

 

Test Data 

 

Purchase 

Type 

Count of 

items 

Weight in 

kilograms 
Output 

1 3  Total cost is 3.69 

1 0  Invalid number of items 

5  4.5 Total cost is 15.525 

5  -6.6 Invalid weight 

3   

QP = Invalid category 

OR 

Code = Invalid purchase type 

 

PMT



11 

 

PMT



12 

 

Question 

number 

MP Appx. 

Line 

Answer Additional guidance Mark 

4   Award marks as shown.  

 

 

 

 

 

 

 

(15) 

   Inputs  

 
4.1  

Two integer inputs taken and assigned to different 

variables (1) 
 

   Crisps  

 

4.2  Calculate partial bags of crisps (1) 

bagsCrisps =  
(numAdults * CRISPS_PER_ADULT) + 
(numChild * CRISPS_PER_CHILD) 

 

● Allow 0.75 and 0.33 instead of 

constants 

   Cheese  

 

4.3  Calculate grams of cheese required (1) 

gramsCheese =  
(numAdults * CHEESE_PER_ADULT) + 
(numChild * CHEESE_PER_CHILD) 

 

● Allow 40, 30, and 500 instead of 

constants 

 4.4  Selection symbol translated to if/else for cheese (1)  

   Rolls  

 

4.5  Calculate number of partial rolls required (1) 

numRolls =  
(numAdults * ROLLS_PER_ADULT) + 
(numChild * ROLLS_PER_CHILD) 

 

● Allow 1.5, 0.5, and 24 instead of 

constants 

 4.6  Selection symbol translated to if/else for rolls (1)   

  

PMT



13 

 

   Overall   

 

4.7  
Conditional tests for both cheese and rolls use 

relational operator (<=) accurately (1) 

gramsCheese <= MIN_CHEESE 
numRolls <= MIN_ROLLS 

 

Allow: 

● < 

 

 

4.8  
Input and output messages are informative and fit for 

purpose (1) 

● Must be more than just the two 

inputs in the flowchart to award this 

mark.   

● Must include code for messages for 

five out of the nine possible 

messages in the flowchart 

 

 
4.9  

One or more use of helpful white space AND one or 

more use of helpful comments (1) 
● Ignore excessive comments 

 
4.10  

Use of given constants throughout, rather than hard-

coded values (1) 

● Constants are involved in all 

relational and arithmetic expressions 

   Number conversions  

 

4.11  

At least one instance of a syntactically accurate 

expression to convert from decimal to whole number, 

even if the result is not correct 

math.ceil (<partial>) 

 

Allow these, although the results 

produced will be incorrect: 

● round (<decimal>) 

● round (<decimal>, 0) 

● int (<decimal>) 

● // 

 

Do not award 

● % 

● / 

 

PMT



14 

 

 

4.12  
math.ceil() used correctly to convert at least one 

decimal to whole number 

math.ceil (gramsCheese / MIN_CHEESE) 
math.ceil (numRolls) 

 

● Can be awarded in addition to 

MP4.11 

   Levels-based mark scheme to a maximum of 3, from:  

 

4.13 

4.14 

4.15 

 Functionality (3) 

● Sequencing and selection used to 

control program flow 

● input() and print() used to 

implement keyboard/console I/O 

● Built-in subprograms used to abstract 

functionality 

 

 
Test Data 

 

   Crisps Cheese Rolls 

Test Data Adults Children 
Partial 

required 
Bags to order 

Partial 
required 

Order 
Partial 

required 
Order 

Set 1 10 3 8.49 9  1 16.5 1 

Set 2 45 14 38.37 39  5 74.5 4 

 

 

PMT



15 

 

Functionality (levels-based mark scheme) 

 

 

0 1 2 3 Max. 

No 

rewa

rdabl

e 

mate

rial 

Functionality (when the code  

is run) 

● The component parts of the 

program are incorrect or 

incomplete, providing a program 

of limited functionality that meets 

some of the given requirements. 

● Program outputs are of limited 

accuracy and/or provide limited 

information. 

● Program responds predictably to 

some of the anticipated input. 

● Solution is not robust and may 

crash on anticipated or provided 

input. 

 

Functionality (when the code  

is run) 

● The component parts of the 

program are complete, providing 

a functional program that meets 

most of the stated requirements. 

● Program outputs are mostly 

accurate and informative. 

● Program responds predictably to 

most of the anticipated input. 

● Solution may not be robust 

within the constraints of the 

problem. 

 

Functionality (when the code  

is run) 

● The component parts of the 

program are complete, providing 

a functional program that fully 

meets the given requirements. 

● Program outputs are accurate, 

informative, and suitable for the 

user. 

● Program responds predictably to 

anticipated input. 

● Solution is robust within the 

constraints of the problem. 

 

3 

PMT



16 

 

 

PMT



17 

 

 

Question 

number 

MP Appx. 

Line 

Answer Additional guidance Mark 

5   Award marks as shown.  

(15) 

   getChoice()  

 
5.1  

menu item choice returned from getChoice() 

subprogram (1) 
 

   getShape()  

 
5.2  

Random number generated, even if upper bound is 

not correct (1) 
 

 
5.3  

Upper bound on random number is controlled by 

length of the array (1) 

random.randint (0, len (pTable) - 1) 
random.randint (0, len (pastaShapes) - 1) 

● Allow omission of -1 

 

5.4  
One-dimensional indexing used to access shape in 

array (1) 

● Ignore value of index inside the [ ] 

● Allow use of global pastaShapes, instead 

of pTable parameter 

   addShape()  

 
5.5  String shape name is appended to array (1) 

● Allow insert instead of append 

● Allow even if global pastaShapes is target 

   Subprograms  

 
5.6  

addShape() and getShape() use the parameter 

pTable to access the array (1) 

● Do not award if pastaShapes appears 

inside either subprogram 

   Main Program  

 
5.7  

Condition-controlled loop (while not choosing to 

exit) (1) 
 

 
5.8  

Selection must handle all options (exit, get, add, 

show, error) (1) 

● Allow switch statement 

● Allow hard-coded rather than constants 

 5.9  Final call to getChoice() inside main loop (1)  

PMT



18 

 

 

  
Levels-based mark scheme to a maximum of 6, 

from: 

Considerations for levels-based mark 

scheme: 

 

 

5.10 

5.11 

5.12 

 Solution design (3) 

● [6.3.2] Consistent use of provided 

constants for menu handling throughout 

or use of switch statement with hard-

coded constant equivalents 

● [6.6.3] getShape() is implemented as a 

function that returns a value 

● [6.4.1] User message provided for invalid 

choices (could be in main program loop 

or in getChoice()) 

 

5.13 

5.14 

5.15 

 Functionality (3) 

● [6.1.6] Get, add, and show function 

correctly 

● [6.4.1] Exits when option 4 is chosen at 

both prompts 

● [6.1.1] Subprogram calls match user 

numbers selected from the menu 

 

 
  

PMT



19 

 

Test Data 

 

Choice Additional Output Note 

3  

Bigoli 

Strozzapreti 

Trofie 

Gigli 

Chitarra 

Penne 

Orecchiette 

Tagliatelle 

Chonchiglie 

Fusilli 

10 items 

2 ZZZZZ   

3  

Bigoli 

Strozzapreti 

Trofie 

Gigli 

Chitarra 

Penne 

Orecchiette 

Tagliatelle 

Chonchiglie 

Fusilli 

ZZZZZ 

11 items 

1  

A shape 

from the 

list 

Check call to random.randint to make sure it will generate all items 

from 0 to the length of the table - 1 

1  

A shape 

from the 

list 

 

5  
Invalid 

input 

The program should display an error message and loop.  It may display 

the menu again or it may not.  Either way is acceptable.   

4  
Exits 

program 
 

 

PMT



20 

 

Solution design (levels-based mark scheme) 

 

 

  

0 1 2 3 Max. 

No 

rewa

rdabl

e 

mate

rial 

● There has been little attempt to 

decompose the problem.  

● Some of the component parts of 

the problem can be seen in the 

solution, although this will not be 

complete. 

● Some parts of the logic are clear 

and appropriate to the problem. 

● The use of variables and data 

structures, appropriate to the 

problem, is limited. 

● The choice of programming 

constructs, appropriate to the 

problem, is limited.   

 

● There has been some attempt to 

decompose the problem. 

● Most of the component parts of 

the problem can be seen in the 

solution. 

● Most parts of the logic are clear 

and appropriate to the problem. 

● The use of variables and data 

structures is mostly appropriate. 

● The choice of programming 

constructs is mostly appropriate 

to the problem. 

  

● The problem has been 

decomposed clearly into 

component parts. 

● The component parts of the 

problem can be seen clearly in 

the solution. 

● The logic is clear and appropriate 

to the problem. 

● The choice of variables and data 

structures is appropriate to the 

problem. 

● The choice of programming 

constructs is accurate and 

appropriate to the problem. 

  

3 

PMT



21 

 

Functionality (levels-based mark scheme) 

 

 

 

 

 

0 1 2 3 Max. 

No 

rewa

rdabl

e 

mate

rial 

Functionality (when the code  

is run) 

● The component parts of the 

program are incorrect or 

incomplete, providing a program 

of limited functionality that meets 

some of the given requirements. 

● Program outputs are of limited 

accuracy and/or provide limited 

information. 

● Program responds predictably to 

some of the anticipated input. 

● Solution is not robust and may 

crash on anticipated or provided 

input. 

 

Functionality (when the code  

is run) 

● The component parts of the 

program are complete, providing 

a functional program that meets 

most of the stated requirements. 

● Program outputs are mostly 

accurate and informative. 

● Program responds predictably to 

most of the anticipated input. 

● Solution may not be robust 

within the constraints of the 

problem. 

 

Functionality (when the code  

is run) 

● The component parts of the 

program are complete, providing 

a functional program that fully 

meets the given requirements. 

● Program outputs are accurate, 

informative, and suitable for the 

user. 

● Program responds predictably to 

anticipated input. 

● Solution is robust within the 

constraints of the problem. 

 

3 

PMT



22 

 

  

PMT



23 

 

 

 

 

 

 

PMT



24 

 

Question 

number 
MP 

Appx

. 

Line 

Answer Additional guidance Mark 

6   Award marks as shown.  

(15) 

 6.1  Process every record in the input file (1)  

 6.2  Strip off the line feed on the last field (1)  

 6.3  Split the line on the commas (1) ● Requires argument of comma 

 6.4  
First two characters of breed or name 

extracted (1) 
 

 6.5  
Number component of key calculated 

correctly (1) 

int(tagNumb) // 100 
int (fields[2]) // 100 

 

● Award calculation, even if number not in 

correct place in the key 

 6.6  Subprogram called to display table (1) 
● Must be accurate call with correct parameter 

and no other extraneous operations  

   
Levels-based mark scheme to a maximum of 

9, from: 
Considerations for levels-based mark scheme:  

 

6.7 

6.8 

6.9 
 
Solution design (3) 

 

● [6.4.2] Open file for reading and close if 

required 

● [6.2.2] Iteration is used appropriately 

● [6.3.1] Data types and structures are used 

appropriately 

 

6.10 

6.11 

6.12 
 
Good programming practices (3) 

 

●  [6.1.4] Program code is laid out in clear 

sections; white space is used to show 

different parts of the solution/functionality 

● [6.1.4] Variable names are meaningful; 

comments are provided and are helpful in 

explaining logic 

PMT



25 

 

 

6.13 

6.14 

6.15 

 Functionality (3) 

● [6.3.1] Correct order for each field in the 

record (key, tag, name, breed) and each 

record in the table 

● [6.1.1] Use decomposition to solve problem 

and create solution 

● [6.1.2] Write in a high-level language 

 

  

PMT



26 

 

Output: 
 

['Hi25An', '2569', 'Annabelle', 'Highland'] 

['Sh37Bo', '3798', 'Bonnie', 'Shetland'] 

['Be45Ca', '4521', 'Carmine', 'Belted Galloway'] 

['Hi57De', '5736', 'Delores', 'Highland'] 

['Sh65Ev', '6504', 'Evette', 'Shetland'] 

['Be77Fr', '7713', 'Francis', 'Belted Galloway'] 

 

Award where tag number is an integer: 
['Hi25An', 2569, 'Annabelle', 'Highland'] 

['Sh37Bo', 3798, 'Bonnie', 'Shetland'] 

['Be45Ca', 4521, 'Carmine', 'Belted Galloway'] 

['Hi57De', 5736, 'Delores', 'Highland'] 

['Sh65Ev', 6504, 'Evette', 'Shetland'] 

['Be77Fr', 7713, 'Francis', 'Belted Galloway'] 

 

Award tuple output: 
('Hi25An', '2569', 'Annabelle', 'Highland') 

('Sh37Bo', '3798', 'Bonnie', 'Shetland') 

('Be45Ca', '4521', 'Carmine', 'Belted Galloway') 

('Hi57De', '5736', 'Delores', 'Highland') 

('Sh65Ev', '6504', 'Evette', 'Shetland') 

('Be77Fr', '7713', 'Francis', 'Belted Galloway') 

 

Do not award where each record is a single string 
'Hi25An,2569,Annabelle,Highland' 

'Sh37Bo,3798,Bonnie,Shetland' 

'Be45Ca,4521,Carmine,Belted Galloway' 

'Hi57De,5736,Delores,Highland' 

'Sh65Ev,6504,Evette,Shetland' 

'Be77Fr,7713,Francis,Belted Galloway' 

  

PMT



27 

 

Solution design (levels-based mark scheme) 

 

  

0 1 2 3 Max. 

No 

rewa

rdabl

e 

mate

rial 

● There has been little attempt to 

decompose the problem.  

● Some of the component parts of 

the problem can be seen in the 

solution, although this will not be 

complete. 

● Some parts of the logic are clear 

and appropriate to the problem. 

● The use of variables and data 

structures, appropriate to the 

problem, is limited. 

● The choice of programming 

constructs, appropriate to the 

problem, is limited.   

 

● There has been some attempt to 

decompose the problem. 

● Most of the component parts of 

the problem can be seen in the 

solution. 

● Most parts of the logic are clear 

and appropriate to the problem. 

● The use of variables and data 

structures is mostly appropriate. 

● The choice of programming 

constructs is mostly appropriate 

to the problem. 

  

● The problem has been 

decomposed clearly into 

component parts. 

● The component parts of the 

problem can be seen clearly in 

the solution. 

● The logic is clear and appropriate 

to the problem. 

● The choice of variables and data 

structures is appropriate to the 

problem. 

● The choice of programming 

constructs is accurate and 

appropriate to the problem. 

  

3 

PMT



28 

 

Good programming practices (levels-based mark scheme) 

  

0 1 2 3 Max. 

No 

rewa

rdabl

e 

mate

rial 

● There has been little attempt to 

lay out the code into identifiable 

sections to aid readability. 

● Some use of meaningful variable 

names. 

● Limited or excessive 

commenting. 

● Parts of the code are clear, with 

limited use of appropriate 

spacing and indentation. 

● There has been some attempt to 

lay out the code to aid 

readability, although sections 

may still be mixed. 

● Uses mostly meaningful variable 

names. 

● Some use of appropriate 

commenting, although may be 

excessive. 

● Code is mostly clear, with some 

use of appropriate white space to 

aid readability. 

 

● Layout of code is effective in 

separating sections, e.g. putting 

all variables together, putting all 

subprograms together as 

appropriate. 

● Meaningful variable names and 

subprogram interfaces are used 

where appropriate. 

● Effective commenting is used to 

explain logic of code blocks. 

● Code is clear, with good use of 

white space to aid readability. 

 

3 

PMT



29 

 

Functionality (levels-based mark scheme) 

 

 

 

 

 

 

0 1 2 3 Max. 

No 

rewa

rdabl

e 

mate

rial 

Functionality (when the code  

is run) 

● The component parts of the 

program are incorrect or 

incomplete, providing a program 

of limited functionality that meets 

some of the given requirements. 

● Program outputs are of limited 

accuracy and/or provide limited 

information. 

● Program responds predictably to 

some of the anticipated input. 

● Solution is not robust and may 

crash on anticipated or provided 

input. 

 

Functionality (when the code  

is run) 

● The component parts of the 

program are complete, providing 

a functional program that meets 

most of the stated requirements. 

● Program outputs are mostly 

accurate and informative. 

● Program responds predictably to 

most of the anticipated input. 

● Solution may not be robust 

within the constraints of the 

problem. 

 

Functionality (when the code  

is run) 

● The component parts of the 

program are complete, providing 

a functional program that fully 

meets the given requirements. 

● Program outputs are accurate, 

informative, and suitable for the 

user. 

● Program responds predictably to 

anticipated input. 

● Solution is robust within the 

constraints of the problem. 

 

3 

PMT



30 

 

 

PMT




